Insight Derived from Molecular Dynamics Simulations into Molecular Motions, Thermodynamics and Kinetics of HIV-1 gp120

نویسندگان

  • Peng Sang
  • Li-Quan Yang
  • Xing-Lai Ji
  • Yun-Xin Fu
  • Shu-Qun Liu
چکیده

Although the crystal structures of the HIV-1 gp120 core bound and pre-bound by CD4 are known, the details of dynamics involved in conformational equilibrium and transition in relation to gp120 function have remained elusive. The homology models of gp120 comprising the N- and C-termini and loops V3 and V4 in the CD4-bound and CD4-unbound states were built and subjected to molecular dynamics (MD) simulations to investigate the differences in dynamic properties and molecular motions between them. The results indicate that the CD4-bound gp120 adopted a more compact and stable conformation than the unbound form during simulations. For both the unbound and bound gp120, the large concerted motions derived from essential dynamics (ED) analyses can influence the size/shape of the ligand-binding channel/cavity of gp120 and, therefore, were related to its functional properties. The differences in motion direction between certain structural components of these two forms of gp120 were related to the conformational interconversion between them. The free energy calculations based on the metadynamics simulations reveal a more rugged and complex free energy landscape (FEL) for the unbound than for the bound gp120, implying that gp120 has a richer conformational diversity in the unbound form. The estimated free energy difference of ∼-6.0 kJ/mol between the global minimum free energy states of the unbound and bound gp120 indicates that gp120 can transform spontaneously from the unbound to bound states, revealing that the bound state represents a high-probability "ground state" for gp120 and explaining why the unbound state resists crystallization. Our results provide insight into the dynamics-and-function relationship of gp120, and facilitate understandings of the thermodynamics, kinetics and conformational control mechanism of HIV-1 gp120.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the Structure, Correlated Motions, and Electrostatic Properties of Two HIV-1 gp120 V3 Loops

The V3 loop of the glycoprotein 120 (gp120) is a contact point for cell entry of HIV-1 leading to infection. Despite sequence variability and lack of specific structure, the highly flexible V3 loop possesses a well-defined role in recognizing and selecting cell-bound coreceptors CCR5 and CXCR4 through a mechanism of charge complementarity. We have performed two independent molecular dynamics (M...

متن کامل

Molecular Recognition of CCR5 by an HIV-1 gp120 V3 Loop

The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular ...

متن کامل

Systematic protein-protein docking and molecular dynamics studies of HIV-1 gp120 and CD4: insights for new drug development

BACKGROUND AND THE PURPOSE OF THE STUDY The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the vi...

متن کامل

Structure and Dynamics of the gp120 V3 Loop That Confers Noncompetitive Resistance in R5 HIV-1JR-FL to Maraviroc

Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistan...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014